The torque τ on a body about a given point is found to be equal to $A \times L$, where A is a constant vector and L is the angular momentum of the body about that point. From this it follows that (1998, 2M)

- (a) $\frac{d\mathbf{L}}{dt}$ is perpendicular to \mathbf{L} at all instants of time
- (b) the component of L in the direction of A does not change with time
- (c) the magnitude of L does not change with time
- (d) L does not change with time

Solz Solution (A, B, C)

(a)
$$\vec{c} = \vec{A} \times \vec{c}$$
] and using vector properties $\vec{c} = \frac{d\vec{c}}{dt}$] and using vector properties

6 det us say ? have a component along \vec{A} lust the component is get concelled out as $\vec{A} \times \vec{L} = 0$ because \vec{A} be component of \vec{A} (\vec{A} component of \vec{A}).

@ de de is ted to e => = is ted to e

only direction of e will change
ent mot it's to magnitude